Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors
نویسندگان
چکیده
Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.
منابع مشابه
Electrochemical Affinity Biosensors Based on Disposable Screen-Printed Electrodes for Detection of Food Allergens
Food allergens are proteins from nuts and tree nuts, fish, shellfish, wheat, soy, eggs or milk which trigger severe adverse reactions in the human body, involving IgE-type antibodies. Sensitive detection of allergens in a large variety of food matrices has become increasingly important considering the emergence of functional foods and new food manufacturing technologies. For example, proteins s...
متن کاملMolybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection.
The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization ...
متن کاملDetection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode.
In the present paper, a comparative study using Co-phthalocyanine and Prussian Blue-modified screen-printed electrodes, has been performed. Both the electrodes have demonstrated an easiness of preparation together with high sensitivity towards thicoholine (LOD=5 x 10(-7) and 5 x 10(-6) M for Co-phthalocyanine and Prussian Blue, respectively) with high potentialities for pesticide measurement. P...
متن کاملMoS₂ field-effect transistor for next-generation label-free biosensors.
Biosensors based on field-effect transistors (FETs) have attracted much attention, as they offer rapid, inexpensive, and label-free detection. While the low sensitivity of FET biosensors based on bulk 3D structures has been overcome by using 1D structures (nanotubes/nanowires), the latter face severe fabrication challenges, impairing their practical applications. In this paper, we introduce and...
متن کاملYeast dual-affinity biobricks: Progress towards renewable whole-cell biosensors.
Point-of-care (POC) diagnostic biosensors offer a promising solution to improve healthcare, not only in developed parts of the world, but also in resource limited areas that lack adequate medical infrastructure and trained technicians. However, in remote and resource limited settings, cost and storage of traditional POC immunoassays often limit actual deployment. Synthetically engineered biolog...
متن کامل